
Notes on Canonical Transformation

For a given quantum system, sometimes we are only interested in the effective Hamilto-

nian in a reduced Hilbert space which is a partial set of the original space. This is usefully

to simplify the problem in the limit of certain parameters. For instance, the Kondo limit of

the Anderson impurity problem, where the single occupancy of the impurity level is assumed

while the charge fluctuations are neglected.

Technically, we can find a canonical transformation(CT) to map the original Hamiltonian

into an effective Hamiltonian in a reduced Hilbert space. A general canonical transformation

is defined as

Hcan = eSHe−S = H + [S,H] +
1

2
[S, [S,H]] +

1

3!
[S, [S, [S,H]]] + . . . . (1)

and it consists of three steps,

• Separate the Hamiltonian into two parts,

H = H0 +Hm, (2)

where Hm contains all terms which mix the states in reduced Hilbert space and the

rest.

• Find a transformation S to eliminate the mixing terms Hm. This can be carried out

order by order. For instance, the first order, we pick S to satisfy

[H0, S
(1)] = Hm. (3)

• Since all terms mixing the reduced Hilbert space and rest are eliminated, we can simply

use a projection operator to project out the unwanted states.

I. LIOUVILLE OPERATORS

Liouville operators are defined as LxA = [Hx, A]. The transformation then can be easily

express as

S(1) =
1

L0

Hm. (4)
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Some properties of the Liouville operators are

(La)† = −[H, a†] = −La†

(La)† = (λa)† = λ∗a†. (5)

II. HUBBARD OPERATORS

The complete Hilbert space for an electron (spin 1/2 fermion) in a quantum state consists

of four states: zero occupancy, spin-up, spin-down, double occupancy. It is usually to

introduce Hubbard operators Xab
i = |a〉ii〈b|.

The electron creation/annihination operators can be expressed as

f †iσ = Xσ0
i + η(σ)Xdσ̄

i

fiσ = X0σ
i + η(σ)X σ̄d

i (6)

where η(σ) = ±1, for σ = ±1/2, while in reverse the Hubbard operators can be written as

X00 = (1− n↑)(1− n↓) (7)

Xσσ = nσ(1− nσ̄) (8)

Xdd = n↑n↓ (9)

Xσ0 = f †σ(1− nσ̄) (10)

Xdσ = η(σ̄)f †σ̄nσ (11)

Xd0 = f †↑f
†
↓ (12)

Xσσ̄ = f †σfσ̄ (13)

Some properties of the Hubbard operators are

[Xab
i , X

cd
j ] = δij(δbcX

ad
i − δdaXcb

i ) (14)

(Xab)† = Xba (15)

Comment: the first relation only holds for boson-like operators between sites to apply δij,

for instance Xσσ̄.
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III. EXAMPLE: MAPPING THE ANDERSON LATTICE MODEL INTO

KONDO LATTICE MODEL

This is a generalization of Schrieffer-Wolf transformation to single impurity problem,

while can be adapted into a few impurity problems.

The Anderson lattice model consists of f -electrons (on each lattice sites) embedded in a

conduction electron band,

HALM = Hc +Hf +Hc−f

Hc =
∑
kσ

εkc
†
kσckσ (16)

Hf =
∑
i

[∑
σ

εfiσnfiσ + Uinfi↑nfi↓

]
Hc−f =

∑
i

∑
σ

(
vike

ik·rif †iσckσ +H.c.
)
. (17)

We are interested in the effective Hamiltonian with single occupancy states on each site

only. Therefore, we identify Hm = Hc−f and H0 = Hc +Hf .

With Hubbard operators we rewrite the Hamiltonian as

Hf =
∑
iσ

εfiX
σσ
i +

∑
i

(2εfi + Ui)X
dd
i

Hc−f =
∑
iσ

{
vike

ik·ri
(
Xσ0
i + η(σ)Xdσ̄

i

)
ckσ + v∗ike

−ik·ric†kσ
(
X0σ
i + η(σ)X σ̄d

i

)}
(18)

The first order of the transformation is to make

[Hc +Hf , S
(1)] = Hc−f . (19)

or S(1) = 1
Lc+Lf

Hc−f with the Liouville operator LxA = [Hx, A]. We find that

S(1) =
∑
iσ

{
vike

ik·ri

(
Xσ0
i ckσ

1

−εk + εfi
+ η(σ)Xdσ̄

i ckσ
1

−εk + εfi + Ui

)
+ v∗ike

−ik·ri

(
c†kσX

0σ
i

1

εk − εfi
+ η(σ)c†kσX

σ̄d
i

1

εk − εfi − Ui

)}
(20)

and the effective Hamiltonian is

H(1)
can =

1

2
[S(1), Hc−f ]. (21)
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Onsite terms are

H(1)a =
1

2

∑
i,k,k′,σ

vikvik′ei(k+k′)·riη(σ)Xd0
i ckσck′σ̄

(
1

−εk + εf
+

1

−εk + εf + Ui

)
+

1

2

∑
i,k,k′,σ

v∗ikv
∗
ik′e−i(k+k′)·riη(σ)X0d

i c
†
kσc
†
k′σ̄

(
1

−εk + εf
+

1

−εk + εf + Ui

)

H(1)b =
1

2

∑
i,k,k′,σ,σ′

vikv
∗
ik′ei(k−k′)·rickσc

†
k′σ′

(
Xσσ′
i −X00

i δσσ′

−εk + εf
+ η(σ)η(σ′)

Xdd
i δσσ′ −X σ̄′σ̄

i

−εk + εf + Ui

)

+
1

2

∑
i,k,k′,σ,σ′

v∗ikvik′e−i(k−k′)·ric†kσck′σ′

(
Xσ′σ
i −X00

i δσσ′

−εk + εf
+ η(σ)η(σ′)

Xdd
i δσσ′ −X σ̄σ̄′

i

−εk + εf + Ui

)
.(22)

H(1)a is to be cancelled in the next order. For H(1)b, we project out empty and double

occupancy states, for instance, terms containing d or 0. The terms lefts are rearranged into

Kondo coupling and potential scattering terms on each site.

H
(1)
eff =

∑
i

e−i(k−k′)·ri

(
Ji,k,k′c†kα~σαβck′β · Si + Vi,k,k′c†kαck′α

)
. (23)

For intersite terms, those with [Xickσ, Xjc
†
k′σ′ ] = XiXjδk,k′δσ,σ′ combinations will survive.

H(1)c =
1

2

∑
i 6=j

{∑
kσ

vikv
∗
jke

ik·(ri−rj)
(
Xσ0
i X

0σ
j + η(σ)Xσ0

i X
σ̄d
j

) 1

−εk + εfi

+
∑
kσ

vikv
∗
jke

ik·(ri−rj)
(
η(σ)Xdσ̄

i X0σ
j +Xdσ̄

i X σ̄d
j

) 1

−εk + εfi + Ui

+
∑
kσ

v∗ikvjke
−ik·(ri−rj)

(
X0σ
i X

σ0
j + η(σ)X0σ

i X
dσ̄
j

) 1

εk − εfi

+
∑
kσ

v∗ikvjke
−ik·(ri−rj)

(
η(σ)X σ̄d

i Xσ0
j +X σ̄d

i Xdσ̄
j

) 1

εk − εfi − Ui

}
(24)

(The third and fourth terms are h.c. of the first and second terms, respectively.) Notice that

Xσ0
i X

0σ
j + η(σ)Xσ0

i X
σ̄d
j = f †iσfjσ(1 − njσ̄) and η(σ)Xdσ̄

i X0σ
j + Xdσ̄

i X σ̄d
j = f †iσfjσniσ̄. These

correspond to direct f -hopping terms. Of course, if we enforce the single occupancy on each

site, i.e., only terms as Xσσ′
i Xσ”σ′′′

j are allowed, these terms are to be eliminated.


